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SUMMARY 
The flux-vector splitting method is applied to the convective part of the steady Navier-Stokes equations for 
incompressible flow. By the use of partial upwind differences in the split first-order part and central differences 
in the second-order part, a set of discrete equations is obtained which can be solved by vector variants of 
classical relaxation schemes. It is shown that accurate results can be obtained on one of the GAMM 
backward-facing step test problems. 
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INTRODUCTION 

The flux-vector splitting method was introduced by Steger and Warming' to solve both unsteady 
and steady Euler equations. For the steady case the time-marching technique was used, i.e., 
integration in time of the unsteady equations up to steady state. It was shown by Jespersen' that 
the flux-vector splitting method can also be used directly on the steady Euler equations to generate 
discrete equations which can be solved by iterative methods. By this example it was shown that, 
more generally, hybrid equations, i.e. equations possessing simultaneously elliptic and hyperbolic 
properties, can be discretized in such a way that a solution can be obtained by classical elliptic 
techniques. 

In this paper it is shown that the flux-vector splitting technique can be applied to the hybrid first- 
order part of the steady Navier-Stokes equations for incompressible flow. By taking upwind 
differences in the split first-order part and central differences in the second-order part of the 
equations, the discrete set of equations can be solved by relaxation methods. 

Preliminary results using this technique have already been reported by the author3 using full 
upwind differences and simple boundary conditions, i.e., prescription of function values or normal 
derivatives of function values. Due to the use of full upwind differences, a rather large artificial 
viscosity was introduced. In this paper it is shown, on one of the GAMM test cases,4 that by the use 
of partial upwind differences and consistent boundary equations, i.e., equations derived from the 
field equations, a very accurate solution can be obtained. 

UPWIND DIFFERENCING FOR SYSTEMS OF EQUATIONS 

Relaxation schemes, such as Jacobi, Gauss-Seidel and successive overrelaxation schemes, are only 
proven for positive equations, i.e., equations of the form 

aiiui - c aijuj  = fi, (1) 
j 
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where, for a discretized partial differential equation, the subscript i refers to a grid point, while j 
refers to surrounding grid points. 

The system (1) is said to be positive if it has the following properties: 

1. positive coefficients: a,, > 0, aij b 0; 
2. dominance of the central node i: aii > X,+Laij;  
3. irreducibility: the system cannot be decoupled into independent subsystems. 

Classical discretizations of scalar elliptic partial differential equations, as, for instance, the central 
discretization of the Laplace equation, generate difference equations of positive type. 

However, it is clear that ellipticity of the partial differential equation is not a necessary condition 
to achieve a difference equation of positive type. For instance, the scalar steady advection equation 

au au 

ax ay a-+b-=O 

leads to a positive-type difference equation if upwind differencing is used, i.e., backward 
differencing for terms in (2) with a positive coefficient and forward differencing for terms with a 
negative coefficient. Hence, for a > 0, b < 0 in (2), 

a ( u i , j - u i - , , j ) + b ( u , , j + ,  -ui , j )=o 
or 

Clearly equation (3) can be solved by any standard relaxation scheme. 

first-order equations with system matrices with real eigenvalues: 

[a+(-b)]ui,j-aUi-l ,j-(-b)ui,j+l =o. (3) 

It is rather easy to extend the notion of scalar positiveness to vector positiveness for systems of 

When A and B have real eigenvalues, it is always possible to split the matrices into a sum of a matrix 
with positive eigenvalues and a matrix with negative eigenvalues: 

A = A + + A - ,  B = B + + B - .  

Equation (4) then can be written in split form as 

An upwind discretization of (5) is then obtained when the ' + ' terms are discretized by backward 
differences and the ' - ' terms by forward differences: 

Although it is not a general rule, clearly for a large class of systems the coefficient matrix C = 
A+ + B +  - A -  - B- has positive eigenvalues. In this case equation (6) is a vector analogue of the 
scalar equation (3). 

It can be said to be of vector-positive type, since the matrix coefficients then have positive 
eigenvalues. It is clear that vector variants of relaxation schemes can be used on vector-positive 
equations. 
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A systematic way to split the matrices A and B in (4) is obtained from the flux-vector splitting 
technique of Steger and Warming' for matrices with real eigenvalues and a complete set of 
eigenvectors. The splitting can then be obtained from a splitting of the eigenvalue matrices. 

By denoting the eigenvalue matrices of A and B in (4) by A, and A, and the left eigenvector 
matrices by XA and X,, obviously 

A = X i '  AAXA, B = Xi' ABXB. (7) 
The eigenvalue matrices can be split into 

A* =A; +A;, A,= A; +A;, 
where for A (similarly for B) 

with 2; = max(AiA, 0) and Ai; = min (AiA, 0). The split matrices then are obtained by 

A'=X,'A2XA, A-=X, 'A,XA,  B+=X,'A;X,, B-=X,'A,X,.  (9) 

FLUX-VECTOR SPLITTING FOR STEADY NAVIER-STOKES EQUATIONS 

The steady Navier-Stokes equations for an incompressible fluid are 

(g + $) = 0, 

where u and z, are the Cartesian components of velocity, c is a reference velocity introduced to 
homogenize the eigenvalues of the system matrix, v is kinematic viscosity and P i s  pressure divided 
by density. 

In system form the set of equations (10)-(12) becomes 

(13) 

or, symbolically, 

The eigenvalues of the system matrices A and B are 
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L 

The left eigenvector matrices are 

5 x B =  

0 1  

0 

2 
u - J(u2 + 4 2 )  

2 

1 0 0 

0 u + J(u' + 4 2 )  

u - J(u2 + 4 2 )  

2 

1 
2 

0 

Obviously, A2A and &, are always positive, &A and 
change sign with u and u. 

are always negative, while A I A  and I , ,  

Hence 

with 

u+ = max(u,O), u -  = min(u,O), u +  = max(u,O), u -  = min(v,O). 

According to the procedure of Steger and Warming, the split matrices becomes 

with 
C2 C2 

a =  b =  
J(U2 f 42) '  J (u2  + 4 2 ) '  
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U V 

J(U2 + 42)’  = J(v2 + 42) ’  
a =  

l + a  , a2=- a, =- 
2 

1 - a  , P1=, 1 + P ,  p 2 - -  - 1 - P  
2 2 

The split form of the system (14) becomes 

On a rectangular grid, using upwind differences in the first-order part and central differences in the 
second-order part, the discretization of (15 )  is 
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G, = vJAx/Ax,, 
G, = V/AX/AX,, 

G, = V/AY/AYs 

H ,  = a/Ax,, 
H e  = a/Axe, 

H ,  = WAY,, 

G n  = VJAyJAyn, H ,  = b/Ay,. 
Since equations (17) and (18) have terms in the velocity differences from the convective p.art and the 
diffusive part in (13), a partial upwind formulation is possible for these equations. Equation (17) is 
then to be repiaced by  

C O x x ( u i , j - u .  I -  1 , j )  + 0.5(1- O x x ) ( u i +  I , j  - ui- 1 , j ) l  

+ '12 C Q x x ( ~ i , j  - Ui+ 1 . j )  + 0*5(1 - ' x x ) ( ~ i -  1 , j  - ui + l , j ) l  

+E21COxy(~i,j-~i,j-l) +0.5(1 - Q x y ) ( u i , j + l  -ui,j-1)1 

- O , J ( U ~ , ~ - ~  - u i , j + l ) ~  +...  =o. (20) 
Equation (18) is to be treated in a similar way, involving coefficients O,, and O,,. The coefficients of 
ui-l ,j ,  ui,j+l and ui,j-l in (20), when placed on the right-hand side, become 

G w + 0 ' 5 ( E , 1  -E12)+@5Qxx(E11 +E12), 

G, - 0.5(E, 1 - E12) + 0.5O,,(EI 1 + Eiz), 

G, + O W 2 1  - E22) + 0.5Qx,(E21+ E ~ z ) ,  

G, - 0'5(E21 - E22) + 0'58,,(E21 + E22). 

In order to guarantee the positiveness of the set of equations, these coefficients are to tie positive. 
This leads to conditions on the upwind factors Ox,, Ox,, O,, and O,,, involving cell Reynolds numbers. 
For instance, the conditions on Ox, are 

Similar conditions apply to Ox,, Oyx and O,,,. 

case of a uniform grid. Then (21) and (22) become 
It is easy to see that the conditions (21) and (22) involve cell Reynolds numbers by considering the 

- u - ~ v / A x  
2a+au 2 

u - ~ v / A x  
2a + CIU . Ox, 3 

NUMERICAL EXAMPLES 

Figure 1 shows the well known GAMM backward-facing step problem: discretized with a coarse 
grid with 202 elements. In the actual computation a grid which was two times more refined in each 
direction was used. This grid has 3232 elements. The following boundary conditions were imposed. 
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Figure 1. Coarse computational grid for the backward-facing step problem 

At inlet 

u = uo(y), in which uo(y) is a parabolic profile with a mean velocity c. 

v = 0. 

p from a combination of the x-momentum equation (17) and the pressure (mass) equation 
(19), so that derivatives in the upstream direction are eliminated. 

These equations are 
a Z U  

a y 2  
a,S:p + (a2u - a)S;u + az6;p  = v- 

a S : p  + a2c26;u - a S ; p  =O, (26) 
where S: and S; denote the derivatives in the backward and the forward directions. In (25) and (26) 
simplifications coming from an assumption of fully developed flow in the inlet section and 
upstream of it are already introduced: S: u = 0, dp/dy = 0, d2u/dx2 = 0. 

Combining (25) and (26) and eliminating 6: p gives 

0.5 [(u - 
d2 U 

J(u2+4c~)]S;u+S;p=v--. 
8Y2 

At outlet 

p = 0. 

v = 0. 

u from a combination of the x-momentum equation (17) and the pressure equation (19), so that 
derivatives in the downstream direction are eliminated. 

Again, with a simplification from an assumption of fully developed flow in the outlet section and 
downstream of it, S; u = 0, d p / a y  = 0, d2 u p x 2  = 0, these equations are 

(28) 
a Z u  

a y 2  
(a,u + a)S:u + a, S,'p + a2 S i p  = v-- 

a l c 2  6: u + a6:p  - a S; p = 0. 

Combining (28) and (29) gives 

a z u  
0.5 [ (u  + J(u2 + 4c2)]6: u + s : p  = v 7. 

dY 

At solid boundaries 

u = 0. 

v = 0. 

p from a combination of the pressure equation and the momentum equations, so that derivatives 
in the outgoing direction are eliminated. 
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For instance, at the horizontal part of bottom boundary, the equations are, for u = O  

y-momentum 
and u = 0, 

cs; v + s ; p  - cay- v + s ; p  = 2v ($ ~ +- $) , 
pressure 

cS: u + 6:p + ~ 6 ,  u - S ; p  + ~ 6 :  u + 6 ; p  + c 6, v - SY-p = 0'. (32) 
In equations (31) and (32) further simplifications are possible. Due to the continuity equation 

(31) and (32) become 

c6;u + s ; p  + s ,p  = 0, 

s:p - s ; p  + cs; u + s; p -6,p = 0. 
(33) 

(34) 
Elimination of S:u and S ; p  is reached by subtracting (33) from (34): 

s:p - s ; p  - 2s,p = 0. (35) 
Similar equations can be derived at  other parts of the solid boundaries. 

underrelaxation method (relaxation factor 0-8) in red-black ordering for 
Figure 2 shows the solution obtained for the full upwind formulation with a successive 

Re = Umaxh/v = 150, (36) 
where U,,, is the maximum value of the velocity at the inlet section and h is the step height. The 
streamlines shown in Figure 2 were obtained through integration of the calculated velocity 
profiles. The ratio of reattachment length to step height is about 5.5. The experimental result is 
about 6. This shows the artificial viscosity associated with the use of full upwind differences. It was 
found that the scheme is unstable for the minimum values of the upwind factors 'calculated 
according to formulae like (21) and (22). In order to achieve stability, upwind factiors of the 
following form are necessary: 

e = It + (1 - It)emin. (37) 
t 1 

I 
I 

I , 

0.0170 6h 

Figure 2. Streamlines for the full upwind method (p = 1) on a twice refined grid; Re = 150 
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1 

0. I 

4J i . =-0.0198 6h  I 
rnm 

Figure 3. Streamlines for the partial upwind method (p = 0.25) on a twice refined grid; Re = 150 

Figure 4. Longitudinal velocity profiles for the full upwind and partial upwind method 

where Omin is the theoretical minimum and p is to be at least 0 2 5 .  
Figure 3 shows the result obtained for the same conditions as in Figure 2 for p = 0.25. The ratio 

of reattachment length to step height is here about 6.1, which is an almost correct result. 
Figure 4 shows the longitudinal velocity profiles at the stations 1.6h, 4h and 8 h  downstream of 

the step for the upwind factors p = 1 and p = 0 2 5 .  The velocity profiles for p = 0 2 5  almost coincide 
with the experimental velocity profiles4 

Figure 5 shows the region in which all cell Reynolds numbers are less than 2. This region covers 
almost the whole recirculation zone, which explains why the solution can be so accurate. 

Figure 6 shows the solution obtained on a grid refined once with respect to the grid shown in 
Figure 1, for the same conditions as in the previous examples. The upwind factor p had to be 
enlarged to 0.35 in order to obtain a solution on this grid. The figure shows streamlines obtained 
from the longitudinal velocity profiles, interpolated to the fine grid. The region in which the cell 
Reynolds numbers are less than 2 is in this example much smaller than shown in Figure 5, but still 
covers an essential part of the recirculation zone. This explains why the solution can have a 
reasonable accuracy. 

On the grid shown in Figure 1, no reasonable result can be obtained for the Reynolds number 
150, since for this grid cell Reynolds numbers are almost everywhere larger than 2. 
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Figure 5. Region in which all cell Reynolds numbers are less than 2 for the partial upwind method on the twice refined grid; 
Re = 150 

1 I 

I 1 ----- 
6 h  0.0168 

Figure 6. Streamlines for the partial upwind method (p = 035) on a once refined grid; Re = 150 

CONCLUSION 

It has been shown that the flux-vector splitting technique can be applied to steady Navier-Stokes 
equations in incompressible flow, leading to discrete equations which can be solved by vector 
variants of classic relaxation schemes. By the use of partial upwind differences an accurate solution 
can be obtained. 
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